Home → Techniques and Tips → @RISK Simulation: Numerical Results → Which Sensitivity Measure to Use?
Applies to: @RISK 5.x–7.x
@RISK gives me a lot of options for sensitivities in my tornado graph: correlation coefficients, regression coefficients, mapped regression coefficients, change in output mean, and so on. How do I choose an appropriate measurement in my situation?
After a simulation, the Sensitivity Analysis window is your handy overview of sensitivities for all outputs. In the Results section of the @RISK ribbon, click the small tornado to open the Sensitivity Analysis window. (You can also see most of this information by clicking the tornado at the bottom of a Browse Results window for an output.)
Change in output statistic:
The Change in Output Statistic tornado displays a degree of difference for just the two extreme bins, but the spider shows more information: the direction of the relationship, and the degree of difference for every bin.
Regression or correlation coefficients:
Regression coefficients and regression mapped values are just scaled versions of each other. Correlation coefficients are rank-order correlation, which works well for linear or non-linear correlations. In the Sensitivity Analysis window, when you select Display Significant Inputs Using: Regression (Coefficients), @RISK will display R² ("RSqr") in each column. You can use R² to help you decide between correlation coefficients and regression coefficients:
For a more detailed explanation of correlation and regression, see Correlation Tornado versus Regression Tornado and How @RISK Computes Rank-Order Correlation.
Contribution to variance:
R² is a measure of the percentage of the variance in a given output can be traced to the inputs — as opposed to measurement errors, sampling variation, and so on. @RISK adds input variables to a regression one by one, and each variable's contribution to variance is simply bow much larger R² grows as that input is added. In other words, a regression equation should predict output values from a set of input values. A variable's contribution to variance measures how much better the equation becomes as a predictor when that input is added to the regression. Unlike a regression coefficient, this measurement is unaffected by the magnitude of the input. For more about this, see Calculating Contribution to Variance.
See also: All Articles about Tornado Charts
Last edited: 2018-08-15